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1. Introduction

Bagger and Lambert [1 – 3], as well as Gustavsson [4, 5] discovered the general rules for

constructing an action for a three-dimensional theory with OSp(8|4) superconformal sym-

metry. Their solution is based on a 3-algebra, which is characterized by structure constants

fABC
D and a metric hAB . The initial assumption was that the metric should be positive

definite. This led to the discovery of a theory with SO(4) gauge symmetry [2]. Its full

superconformal symmetry was verified in [6], which also conjectured its uniqueness. The

uniqueness of this theory was proved in [7, 8]. A proposal for its physical interpretation in

terms of M2-branes in M-theory at an M-fold singularity has been given in [9, 10].

These developments left unresolved the question whether it is possible to give a La-

grangian description of the conformal field theory associated with coincident M2-branes in

flat 11-dimensional spacetime. That theory is known to correspond to the IR fixed point

of N = 8 super Yang-Mills theory. The question is whether there is a dual formulation

of this fixed-point theory. The only apparent way of evading the uniqueness theorem is to

consider 3-algebras with an indefinite signature metric. This possibility was examined by

three different groups [11 – 13], who proposed a new class of theories based on a 3-algebra

with Lorentzian signature. The generators of the 3-algebra are the generators of an arbi-

trary semisimple Lie algebra plus two additional null generators T±. The theory based on

the 3-algebra associated to the gauge group SU(N) or Υ(N) looks like a good candidate for

the theory of N coincident M2-branes, except for the fact that it contains unwanted nega-

tive norm states in the physical spectrum. This makes the theory nonunitary even though

these states do not contribute to loops. Subsequent papers discussing the interpretation

and application of Lorentzian 3-algebras include [14]–[25]. In particular, [25] proved that

the Lorentzian 3-algebras considered in [11 – 13] are the only indecomposable Lorentzian

3-algebras (aside from the obvious SO(3, 1) variant of the Bagger-Lambert theory).
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In this paper we propose modifying the construction in [11 – 13] by gauging certain

global symmetries.1 We claim that this eliminates the unwanted ghost degrees of freedom

while preserving all of the other symmetries. In section 2 we explain the basic idea of our

construction in a simplified model. Section 3 applies the same procedure to the theory of

interest.

2. The basic idea

After integrating out certain auxiliary fields, the theory proposed in [11 – 13] contains terms

of the form

S ∼

∫

d3x
(

−φ−2
+ Tr(F 2) + ∂µφ+∂µφ−

)

This has manifest scale invariance if φ± have dimension 1/2. This theory has a ghost

degree of freedom, which (ignoring the first term) is reminiscent of the one contained in the

covariant gauge-fixed string world-sheet theory prior to imposing the Virasoro constraints.

In the present case, there are no Virasoro constraints, so the theory needs to be modified

if we wish to make sense of it.

An important clue is that this theory has a global symmetry given by a constant shift

of the field φ−. Our proposal is to modify this theory by gauging this symmetry through

the inclusion of a dimension 3/2 Stückelberg field Cµ

S ∼

∫

d3x
(

−φ−2
+ Tr(F 2) + ∂µφ+(∂µφ− − Cµ)

)

.

The gauge symmetry is simply given by

δφ− = Λ δCµ = ∂µΛ.

Classically, this theory is conformally invariant. (In the case of the M2-brane theory in the

next section the conformal symmetry is expected to survive in the quantum theory.) This

theory can be gauge fixed by setting φ− = 0. Integrating out Cµ gives a delta functional

imposing the constraint ∂µφ+ = 0. Thus, φ+ is a constant, which is determined by a

boundary condition. Calling the constant gYM, we are left with pure Yang-Mills theory

S ∼ −g−2

YM

∫

d3xTr(F 2).

The Yang-Mills theory is not conformally invariant, of course, since gYM is dimen-

sionful. However, this construction shows that it arises from spontaneous breaking of the

conformal symmetry.

1After this work had been completed, Hirosi Ooguri informed us that Masahito Yamazaki is also con-

sidering this possibility.
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3. Modifying the BL theory

Using the notation of [12], we start with the following Bagger-Lambert theory based on a

family of 3-algebras with Lorentzian metric:

L = −
1

2
Tr

(

DµXIDµXI
)

+ DµXI
+DµXI

− +
i

2
Tr

(

Ψ̄ΓµDµΨ
)

−
i

2
Ψ̄+ΓµDµΨ− −

i

2
Ψ̄−ΓµDµΨ+ + ǫµνλTr (Bλ (∂µAν − [Aµ,Aν ]))

−
1

12
Tr

(

XI
+

[

XJ ,XK
]

+ XJ
+

[

XK ,XI
]

+ XK
+

[

XI ,XJ
])2

(3.1)

+
i

2
Tr

(

Ψ̄ΓIJXI
+

[

XJ ,Ψ
])

+
i

4
Tr

(

Ψ̄ΓIJ

[

XI ,XJ
]

Ψ+

)

−
i

4
Tr

(

Ψ̄+ΓIJ

[

XI ,XJ
]

Ψ
)

,

where I = 1, . . . , 8 are the transverse coordinates and XI
± = 1√

2

(

XI
0 ± XI

1

)

. The covariant

derivatives are defined as

DµXI = ∂µXI − 2
[

Aµ,XI
]

− BµXI
+, (3.2a)

DµXI
− = ∂µXI

− − Tr
(

BµXI
)

, (3.2b)

DµXI
+ = ∂µXI

+ (3.2c)

and similarly for the fermions. Note that this theory has a noncompact gauge group whose

Lie algebra is a semidirect sum of any ordinary Lie algebra g of a compact Lie group G,

and dim(g) abelian generators. The gauge field Aµ is associated with the compact part,

while the gauge field Bµ is associated with the noncompact part. This theory was recently

proposed in [11 – 13]. Various details of this Lagrangian, including its field content, gauge

symmetry, and supersymmetry transformations, are given in the appendix. Like all BL

theories, it has N = 8 supersymmetry, scale invariance, conformal invariance, and SO(8)

R-symmetry. These combine to give the supergroup OSp(8|4). The theory also has parity

invariance. At the same time, it does not admit any tunable coupling constant, since any

coupling constant can be absorbed in field redefinitions. Furthermore G can be chosen to

be any compact Lie group. These are special features that are not shared by the SO(4) BL

theory, which is based on a 3-algebra with a positive-definite metric.

Despite the numerous properties which make this theory a promising candidate for

describing multiple M2-branes in flat space, it has one very troubling feature. To see this,

consider the fields XI
− and Ψ−. Note that the full dependence on these fields is given by:

L− = −iΨ̄+Γµ∂µΨ− + ∂µXI
+∂µXI

−. (3.3)

As it stands, these terms describe propagating ghost degrees of freedom, which makes the

theory unsatisfactory, since it is not unitary. At this point, it is useful to observe that the

action has the following global shift symmetries (pointed out in [12]):

δXI
− = ΛI and δΨ− = η.

Also note that Ψ− and XI
− do not appear in any of the gauge or SUSY transformations of

the other fields. We will show that it is possible to eliminate the ghosts from the theory,

– 3 –
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while preserving all of its desirable properties, by promoting these global shift symmetries

to local symmetries.

To gauge the global shift symmetries described above we introduce two new gauge

fields: a vector field CI
µ in the vector representation of SO(8), and a 32-component

Majorana-Weyl spinor χ satisfying Γ012χ = −χ. These appear in two new terms which we

add to the Lagrangian:

Lnew = Ψ̄+χ − ∂µXI
+CI

µ. (3.4)

Note that CI
µ must have dimension 3/2 and χ must have dimension 2 to preserve scale

invariance. The new local shift symmetries are

δXI
− = ΛI , δCI

µ = ∂µΛI (3.5)

and

δΨ− = η, δχ = iΓµ∂µη. (3.6)

There is one additional local symmetry of eq. (3.4), which is relatively trivial, namely

δCI
µ = ∂ρΛ̃I

µρ, where Λ̃I
µρ = −Λ̃I

ρµ. (3.7)

CI
µ and χ are invariant under the original gauge symmetries.

Now let us consider the supersymmetry of the modified theory. The supersymmetry

transformations of all the old fields are unchanged. In particular,

δXI
+ = iε̄ΓIΨ+ (3.8)

and

δΨ+ = Γµ∂µXI
+ΓIε. (3.9)

The supersymmetries of the new gauge fields must be defined in such a way that Lnew is

invariant. We will find that the resulting supersymmetry algebra closes on shell when one

takes account of the new gauge symmetries. Under supersymmetry

δCI
µ = ε̄ΓIΓµχ (3.10)

and

δχ = iΓIε ∂µCI
µ. (3.11)

Using these four transformation rules, it is easy to see that both Lnew and the equations

of motion are supersymmetric.

We will now check the closure of all the algebras. The fact that the supersymmetry

variations of CI
µ and χ are not invariant under the new gauge transformations implies that

the supersymmetry transformations do not commute with these gauge transformations.

Specifically, one finds that

[δ(Λ), δ(ε)] = δ(η), where η = ΓµΓI∂µΛIε (3.12)

and

[δ(η), δ(ε)] = δ(Λ) + δ(Λ̃) where ΛI = iε̄ΓIη and Λ̃I
µρ = iε̄ΓIΓµρη. (3.13)

– 4 –
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The supersymmetry algebra is slightly affected, as well. Specifically, we find that

[δ(ε1), δ(ε2)]C
I
µ = δ(ξ)CI

µ + δ(Λ̃)CI
µ, (3.14)

where ξρ = 2iε̄1Γ
ρε2, as usual, and Λ̃I

µρ = ξµCI
ρ − ξρC

I
µ. Similarly, for χ we find that

[δ(ε1), δ(ε2)]χ = δ(ξ)χ + δ(η)χ, (3.15)

where η =
(

−ǭ1Γ
µǫ2Γµ + 1

4
ǭ1Γ

LM ǫ2ΓLM

)

χ. One also finds that requiring the on-shell clo-

sure of the commutator [δ(ε1), δ(ε2)]Ψ− gives the expected equation of motion for Ψ− after

noting that the commutator receives a contribution from δ(η)Ψ−. In summary, we have

verified that the supersymmetries close on shell into translations, the old gauge transfor-

mations, and the new gauge transformations given by Eqs (3.5)–(3.7).

4. Discussion

After modifying the theory by introducing the new gauge fields Cµ and χ, it still has scale

invariance, N = 8 supersymmetry, no coupling constant, and can accommodate any Lie

group in its gauge group, which are all desirable properties for describing multiple M2-

branes in flat space. In addition, we can use the new gauge symmetries to make the gauge

choices

XI
− = Ψ− = 0.

This removes the kinetic terms for the ghosts and changes the supersymmetry transfor-

mations for Cµ and χ by induced gauge transformations, i.e. δCI
µ = ǭΓIΓµχ + ∂µΛI and

δχ = iΓIǫ∂µCI
µ + iΓµ∂µη for appropriate choices of ΛI and η. Furthermore, the equations

of motion that come from varying the new fields are

∂µXI
+ = 0, Ψ+ = 0.

The first equation implies that the XI
+ is a constant. Any nonzero choice spontaneously

breaks conformal symmetry and breaks the R-symmetry to an unbroken SO(7) subgroup.

On the other hand, the choice XI
+ = 0 gives a free theory.

We can use the SO(8) R-symmetry to choose the nonzero component of XI
+ to be in the

8 direction, XI
+ = vδI8. Also, the noncompact gauge fields, B, which appear quadratically

can be integrated out. This leaves a maximally supersymmetric 3d Yang-Mills theory with

SO(7) R-symmetry:

L = −
1

4v2
Tr (FµνFµν) −

1

2
Tr

(

D′
µXiD′

µXi
)

+
i

2
Tr

(

Ψ̄ΓµD′
µΨ

)

+
i

2
Tr

(

Ψ̄Γ8i

[

Xi,Ψ
])

−
v2

4
Tr

([

Xi,Xj
])2

(4.1)

where the index i = 1, . . . , 7, and D′
µ and Fµν depend only the massless gauge field A

associated with the maximally compact subgroup of the original gauge group. Note that

this is an exact result — not just the leading term in a large-v expansion. This is a

supersymmetric generalization of the toy model described in section 2.

– 5 –



J
H
E
P
0
7
(
2
0
0
8
)
1
1
7

To summarize, in this paper we have proposed a modification of the Bagger-Lambert

theory that removes the ghosts when the 3-algebra has a Lorentzian signature metric,

thus ensuring unitarity. Such theories evade the no-go theorem, which states that there is

essentially only one nontrivial 3-algebra with positive-definite metric. Our modification of

the Lorentzian 3-algebra theories in [11 – 13] breaks the conformal symmetry spontaneously

and reduces them to maximally supersymmetric 3d Yang-Mills theories.2 This result is

somewhat disappointing inasmuch as it means that we are no closer to the original goal of

understanding the v → ∞ IR fixed-point theory that describes coincident M2-branes in 11

noncompact dimensions. As things stand, it appears that the BL SO(4) theory is the only

genuinely new maximally supersymmetric superconformal theory. Of course, one should

still explore whether there are other 3-algebras (whose metric is neither positive-definite

not Lorentzian) that open new possibilities.

Note added: After this paper was first posted, two related papers appeared [26, 27].

Also, a paper by Aharony et al. appeared that introduces a very promising class of theories

with N = 6 superconformal symmetry [28]. It proposes that these theories actually have

N = 8 superconformal symmetry (implemented in a very subtle manner) in the appropriate

cases.
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A. BL theory for general Lie algebras

In this appendix, we follow the notation of [12]. The Lagrangian of a BL-theory is com-

pletely specified once a 3-algebra with a metric is given. The structure constants of the

3-algebra fABC
D must satisfy the fundamental identity and fABCE = fABC

DhDE , where

hDE is the 3-algebra metric, must be totally antisymmetric. In [12], the 3-algebra is con-

structed from an ordinary Lie algebra g by adding two generators to g called T+ and T−

so that the 3-algebra has dimension dim (g) + 2. Its structure constants are given in terms

of the g-structure constants fab
c as

f+ab
c = fab

c, (A.1)

with all other nonzero components of fABC
D related by permuting, raising, or lowering

indices. The generators of g satisfy

[

T a, T b
]

= fab
cT

c, (A.2)

Tr
(

T aT b
)

= δab.

2Reference [13] observed that if one chooses X
I

+ to be constant and Ψ+ to be zero, then the theory

reduces to N=8 SYM. However, they did not deduce these choices from an action principle.
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Field 3d World Volume SO(8) g Dimension

XI
± Scalar 8v Singlet 1/2

XI Scalar 8v Adjoint 1/2

Ψ± Spinor 8s Singlet 1

Ψ Spinor 8s Adjoint 1

Aµ Gauge field 1 Adjoint 1

Bµ Gauge field 1 Adjoint 1

Table 1: Field content of the theory.

The invariant metric of the 3-algebra is given by

h+− = −1, h++ = 0, h−− = 0, hab = δab. (A.3)

With the choice of structure constants and 3-algebra metric given above, the BL theory

reduces to the Lagrangian given in eq. 1. The field content of the theory is summarized in

table 1.

The gauge transformations are

δXI = 2
[

Λ,XI
]

+ MXI
+, (A.4a)

δXI
− = Tr

(

MXI
)

, (A.4b)

δXI
+ = 0, (A.4c)

δΨ = 2 [Λ,Ψ] + MΨ+, (A.4d)

δΨ− = Tr (MΨ) , (A.4e)

δΨ+ = 0. (A.4f)

δAµ = ∂µΛ + 2 [Λ,Aµ] , (A.4g)

δBµ = ∂µM + 2 [M,Aµ] + 2 [Λ,Bµ] , (A.4h)

where Λ and M are infinitesimal matrices in the adjoint of g. The matrix Λ generates the

G gauge transformations while M generates the noncompact subgroup transformations.

Finally, the N = 8 SUSY transformations (consistent with scale invariance) are

δAµ =
i

2
ε̄ΓµΓI

(

XI
+Ψ − XIΨ+

)

, (A.5a)

δBµ = iε̄ΓµΓI

[

XI ,Ψ
]

, (A.5b)

δXI
± = iε̄ΓIΨ±, (A.5c)

δXI = iε̄ΓIΨ, (A.5d)

δΨ+ = ∂µXI
+ΓµΓIε, (A.5e)

δΨ− = DµXI
−ΓµΓIε −

1

3
Tr

(

XIXJXK
)

ΓIJKǫ, (A.5f)

δΨ = DµXIΓµΓIε −
1

2
XI

+

[

XJ ,XK
]

ΓIJKǫ. (A.5g)
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